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1 Motivating example - M2(R) and H
The algebra M2(R) of 2 × 2 matrices with real entries is something we all know and love.
Perhaps less familiar is the Hamilton quaternions, which is another 4-dimensional R-algebra.
We can describe it as

H =
{
a+ bj + ck + djk : a, b, c, d ∈ R, j2 = k2 = −1, jk = −kj

}
I like to think of it via the following presentation.

H =
〈
1, j, k, jk : j2 = k2 = −1, jk = −kj

〉
where the angle brackets denote span over R.

1.1 Not isomorphic as R-algebras

So we have two 4-dimensional algebras over R, a natural question to ask is whether they are
isomorphic. They are not.

Proposition 1.1. M2(R) 6∼= H.

Proof. We show H is a division algebra. Given q = a+ bj + ck + djk, define

q = a− bj − ck − djk N(q) = qq = a2 + b2 + c2 + d2

Then
qq

N(q)
= 1

so if q 6= 0, it has an inverse q−1 = q
N(q)

. On the other hand, M2(R) is clearly NOT a division
algebra, since it has zero divisors, for example(

0 1
0 0

)

So H and M2(R) are different, at least in this sense. However, they are the same in a different
sense. What happens when we extend scalars by tensoring with C? Well clearly if we extend
scalars to C for M2(R), we just get M2(C).

M2(R)⊗R C
∼=−→ M2(C)

An explicit isomorphism is given by(
a 0
0 0

)
⊗ z1 +

(
0 b
0 0

)
⊗ z2 +

(
0 0
c 0

)
⊗ z3 +

(
0 0
0 d

)
⊗ z4 7→

(
z1a z2b
z3c z4c

)
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1.2 Become isomorphic after extension to C
Somewhat more surprisingly, if we consider the tensor product H⊗RC, we ALSO get M2(C).

Proposition 1.2. H⊗R C ∼= M2(C).

Proof. Since 1, j, k, jk is an R-basis of H, 1⊗ 1, j ⊗ 1, k ⊗ 1, jk ⊗ 1 is a C-basis of H⊗R C.
So to define a C-linear map H⊗R C→ M2(C), it suffices to define it on the generators.

1⊗ 1 7→ 1 =

(
1 0
0 1

)
j ⊗ 1 7→ ĵ =

(
i 0
0 −i

)
k ⊗ 1 7→ k̂ =

(
0 1
−1 0

)
jk ⊗ 1 7→ ̂̀=

(
0 i
i 0

)
Since the images are four C-linearly independent elements of M2(C) and M2(C) is 4-dimensional
over C, we get that the map described above is bijective. To verify this is a homomorphism
of algebras, we just need to verify that the relations ĵ2 = k̂2 = −1 and ĵk̂ = ̂̀and ĵk̂ = −k̂ĵ,
which are quick matrix calculations.

So something a bit funny is going on with H and M2(R). Let’s draw a diagram.

C-algebras M2(C)

R-algebras M2(R) H

(−)⊗RC

As R-algebras, they are distinct isomorphism classes. But after extending scalars, they are
the same. They are what we call twisted forms of each other. This leads us to our next
definition.
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2 Galois descent

2.1 Twisted forms

Definition 2.1. Let L/K be a field extension. Let A be a K-algebra. A twisted L/K-form
of A is a K-algebra B such that A⊗K L ∼= B ⊗K L.

L-algebras A⊗K L B ⊗K L

K-algebras A B

∼=

(−)⊗KL

Given an K-algebra A, we’ll denote the set of (K-isomorphism classes) of twisted forms of
A by TFL(A).

This definition makes sense for any field extension, but the case when L/K is a Galois
extension is when we can say something about the situation. The process of extending
scalars, of applying the functor (−) ⊗K L is called Galois ascent. Galois descent is the
study of the much more tricky reverse process. The goal is to answer questions like:

1. Given A, and a twisted form B, what is the relationship between A and B?

2. Given an L-algebra C, what can I say about the set of all K-algebras A such that
A ⊗K L ∼= C? That is, can I locate a given A, and what does the set of all twisted
forms of A look like?

2.2 Galois action on L-morphisms

Definition 2.2. Let L/K be a Galois extension with Galois group G = Gal(L/K), and let
A,B be K-algebras. Given σ ∈ G, the map

Id⊗σ : A⊗K L→ A⊗K L a⊗ ` 7→ a⊗ σ(`)

is an automorphism of AL as an L-algebra. This allows G to act on the set of L-algebra
homomorphisms AL → BL as follows.

G× HomL(AL, BL) (σ, f) 7→ σf = (IdB ⊗σ) ◦ f ◦ (IdA⊗σ−1)

Here’s a diagram.

A⊗K L A⊗K L B ⊗K L B ⊗K L
IdA⊗σ−1

σf

f IdB ⊗σ

This is a group action, which means that

σ (τf) = (στ)f

The particular case A = B is important, since it says that G acts on the set AutL(AL) of
automorphisms of AL. In that case, the diagram is simpler.
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A⊗K L A⊗K L A⊗K L A⊗K L
Id⊗σ−1

σf

f Id⊗σ

Also note that G acts on the group X = AutL(AL) by automorphisms. This means

σ(f ◦ g) = (σf) ◦ (σg) (σf)−1 = σ(f−1)

2.3 Given a twisted form of A, obtain a cocycle

We fix a Galois extension L/K, and a K-algebra A. Let A be a K-algebra, and let B be a
twisted L/K-form of A. Remember this means we have an L-algebra isomorphism

f : AL
∼=−→ BL

We will associate to B a function Gal(L/K)→ AutL(AL), which will turn out to have some
nice cocycle properties. So we’ll define a map

a : Gal(L/K)→ AutL(AL) σ 7→ aσ = f−1 ◦ σf

Here’s a diagram.

A⊗K L A⊗K L B ⊗K L B ⊗K L A⊗K L
Id⊗σ−1

σf

aσ=f−1◦σf

f Id⊗σ f−1

At the moment, the notation aσ seems bad since it implies that things don’t depend on
the choice of f . It is true that aσ depends on f , but in a minute we’ll see that it doesn’t
depend on f in a bad way. Now we can do the following calculation, which is saying that
the function a is a cocycle.

Given σ, τ ∈ G,

aστ = f−1 ◦ (στf)

= f−1 ◦ (σ (τf))

= f−1 ◦ (σf) ◦ (σf)−1 ◦ (σ (τf))

= f−1 ◦ (σf) ◦ (σf−1) ◦ (σ (τf))

= aσ ◦ (σf−1) ◦ (σ (τf))

= aσ ◦
(
σ
(
f−1 ◦ (τf)

))
= aσ ◦ (σaτ )

We can also write this without the composition and parentheses if we want, to be fancy.

aστ = aσ
σaτ

This equality is called the cocycle condition. For those who know some group cohomology,
this is saying that

a ∈ Z1(G,AutL(AL))
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Definition 2.3. Let G be a group and let X be another group on which G acts by auto-
morphisms.

G×X → X (g, x) 7→ gx

A 1-cocyle or crossed homomorphism is a map

a : G→ X σ 7→ aσ

satisfying
aστ = aσ

σaτ

for all σ, τ ∈ G. If you try to write this without all the nice notation, it looks something like

a(στ) = a(σ) ∗
(
σ · a(τ)

)
where · is the action of G on X and ∗ is the multiplication in X. Obviously a homomorphism
G → X would satisfy aστ = aσaτ , so this is why we say “crossed” homomorphism. The set
of all 1-cocycles is denoted

Z1(G,X)

2.4 Equivalence of cocycles, nonabelian H1

Definition 2.4. Let G be a group and X be a group on which G acts by automorphisms.
Let a, b ∈ Z1(G,X) by 1-cocycles. They are equivalent or cohomologous if there exists
x ∈ X such that

bσ = x−1aσ
σx

for all σ ∈ G. This is an equivalence relation. Reflexivity is easy (use x = 1), symmetry is
easy (use x−1). Transitivity is tricky to track all the notation, but if a ∼ b using x and b ∼ c
using x′, then a ∼ b using x′x.

Definition 2.5. Let G,X be as above. The set of equivalence (cohomology) classes in
Z1(G,X) is denoted H1(G,X).

Remark 2.6. Notice that the definition above did not involve X being an abelian group.
In particular, we want to study this when X = AutL(AL), which is generally not abelian.

For those who know some group cohomology, if X is abelian, this coincides with the usual
definition ofH1. However, in the abelian case, there is an infinite sequenceH1(G,X), H2(G,X) . . .
of groups, and here we don’t get that. Even worse, H1(G,X) does NOT have a group struc-
ture. It’s just a set. It’s a little better than a set, since it has a distinguished element, but
really it’s just a pointed set.

2.5 From a twisted form to a cohomology class

Ok, so what have we done? Let X = AutL(AL). We took an L-isomorphism f : AL → BL,
and associated to it a cocycle a : G→ X. So we have a map

β :
{

isomorphisms AL
∼=−→ BL

}
→ Z1(G,A) f 7→ a = (σ 7→ aσ = f−1 ◦ σf)
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But we don’t want this dependence on the choice of isomorphism f , we want to really
just understand the relationship between A and B, without reference to a particular L-
isomorphism f . The following lemma handles this well.

Lemma 2.7. Let L/K be a Galois extension, let A be a K-algebra, and let B be a twisted
L/K-form of A, and let β be the map described above.

1. If f, g are isomorphisms AL → BL, then β(f), β(g) are cohomologous. That is, im β
is contained in a single equivalence class in Z1(G,X).

2. If a, b ∈ Z1(G,X) are cohomologous and a ∈ im β, then b ∈ im β. That is, im β is an
entire equivalence class.

Proof. (1) Let f, g be isomorphisms AL → BL, and let a = β(f), b = β(g).

a : G→ A σ 7→ aσ = f−1 ◦ σf
b : G→ A σ 7→ bσ = g−1 ◦ σg

Then let x = g−1f ∈ X = AutL(AL), and compute

x−1bσ
σx =

(
g−1f

)−1(
bσ

)(
σ(g−1f)

)
=
(
f−1g

)(
g−1 ◦ σg

)( (
σg−1

)
σf
)

=f−1��
�*

gg−1 ���
���

�:
(σg) (σg)−1 σf

= f−1 ◦ σf
= aσ

Thus a, b are cohomologous.
(2) Let a, b ∈ Z1(G,X) be cohomologous and suppose a = β(f), so aσ = f−1 ◦ σf for all

σ ∈ G. Then there exists x ∈ X such that

bσ = x−1aσ
σx = x−1f−1 ◦ σfσx = (fx)−1 ◦ σ(fx)

hence b = β(fx).

Remark 2.8. The previous lemma says that given a twisted form B of an algebra A, the
associated cohomology class in H1(G,A) which is the image of β above does not depend on
the choice of isomorphism f : AL → BL. Hence we have obtained a map

TFL(A)→ H1(G,X B 7→ [β(f)] = [a]

To summarize, given a twisted form B:

1. Choose an L-isomorphism f : AL → BL.

2. Associated to f is a cocycle a ∈ Z1(G,X), which is a : G → AutL(X), a 7→ f−1 ◦ σf .
This cocycle does depend on the choice of f .

3. Take the equivalence class of a to get [a] ∈ H1(G,X). While the cocyle a depends on
f , the class [a] only depends on B.
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2.6 Main correspondence

This finally allows me to state the main fact which I wanted to get to.

Theorem 2.9. The map TFL(A)→ H1(G,X) above is a bijection.

Remark 2.10. There is a lot of interesting things to say about the proof. In particular,
the inverse map can be described via a similarly convoluted construction, which is also very
interesting. In fact, describing the inverse map involves more true flavor of Galois descent
techniques, but I don’t have time for it unfortunately.

3 Examples

3.1 Return to M2(R) and H
To try to understand the theorem better, let’s examine our starting example. We take
K = R, L = C, G = Gal(L/K) ∼= Z/2Z, A = M2(R), B = H. First let’s try to understand
X = AutL(AL). Well we know AL = M2(C), so the question is, what are the automorphisms
of M2(C) as a C-algebra? Well, given x ∈ GL2(C), we can do conjugation by x.

M2(C)→ M2(C) y 7→ xyx−1

This is an automorphism. In fact, all automorphisms of M2(C) have this form, but this is
not obvious. It is a consequence of the Skolem-Noether theorem, but for the moment, just
take my word if you haven’t heard of that. Ok so this says that roughly, the automorphisms
of M2(C) are basically GL2(C). But wait, not quite. If x = λI is a scalar matrix, then it
commutes with any matrix.

(λI)y(λI)−1 = λyλ−1 = λλ−1y = y

So if x is a scalar matrix, it acts as the identity. Another way to say this is that the
action of GL2(C) on M2(C) factors through the quotient PGL2(C) = GL2(C)/C×. So the
automorphism group X = AutC(M2(C)) is PGL2(C).

Recall that the Galois group Gal(C/R) acts on this automorphism group, we defined
this action in general earlier. In this case, the action is pretty straightforward. Remember
that the only nontrivial element of Gal(C/R) is complex conjugation, so we just have to
understand how that acts on PGL2(C). Well, there’s a pretty obvious way for it to act,
which is to act by complex conjugation entry-wise, and this is how it acts.

So putting things together, the theorem says that there’s a correspondence

TFC

(
M2(R)

)
∼= H1

(
Z/2Z,PGL2(C)

)
3.2 Relation to Brauer groups

The previous example generalizes. Let L/K be a finite Galois extension of degree n = [L : K],
and let A = Mn(K). The twisted forms of A are then the central simple K-algebras which
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become isomorphic to Mn(L) after tensoring. Such algebras are precisely representatives of
the elements of the relative Brauer group Br(L/K).

TFL

(
Mn(K)

)
∼= Br(L/K)

If L is the separable closure of K (equivalently L is the algebraic closure if charK = 0)
then the relative Brauer group is the whole Brauer group. So for instance, in the previous
example,

TFC

(
M2(R)

)
∼= Br(C/R) = Br(R)

Returning to some generality, applying Skolem-Noether as before tells us that AutL(Mn(L)) ∼=
PGLn(L). So

Br(L/k) ∼= TFL

(
Mn(K)

)
∼= H1

(
Gal(L/K),PGLn(L)

)
3.3 Relation to descent

Let’s try and connect our main correspondence to Galois descent. The situation of descent
is something like this.

L-algebras AL

K-algebras ? A ?

??(−)⊗KL

We want to know what other things on the K-level correspond to our L-algebra AL. Well
the correspondence says something about the set of all the question marks. It says they
correspond to some cohomology set.

L-algebras AL

K-algebras {?, ?, ?, . . .} H1
(

Gal(L/K),Aut(AL)
)?(−)⊗KL

∼=

⊗L

So this tells us that if we want to understand how to descend, it’s going involve to the Galois
group and its interactions with automorphisms on the L-level.
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